Schur ' s Determinants and Partition
نویسنده
چکیده
Garrett, Ismail, and Stanton gave a general formula that contains the Rogers{ Ramanujan identities as special cases. The theory of associated orthogonal polynomials is then used to explain determinants that Schur introduced in 1917 and show that the Rogers{Ramanujan identities imply the Garrett, Ismail, and Stanton seemingly more general formula. Using a result of Slater a continued fraction is explicitly evaluated.
منابع مشابه
Doubly-refined enumeration of Alternating Sign Matrices and determinants of 2-staircase Schur functions
We prove a determinantal identity concerning Schur functions for 2staircase diagrams λ = (ln+l, ln, l(n−1)+l′, l(n−1), . . . , l+l, l, l, 0). When l = 1 and l = 0 these functions are related to the partition function of the 6-vertex model at the combinatorial point and hence to enumerations of Alternating Sign Matrices. A consequence of our result is an identity concerning the doubly-refined nu...
متن کاملAre No More!
We prove Okounkov’s conjecture, a conjecture of Fomin-FultonLi-Poon, and a special case of Lascoux-Leclerc-Thibon’s conjecture on Schur positivity and derive several more general statements using a recent result of Rhoades and Skandera. 1. Schur positivity conjectures The ring of symmetric functions has a linear basis of Schur functions sλ labelled by partitions λ = (λ1 ≥ λ2 ≥ · · · ≥ 0). A sym...
متن کاملSchur-Positivity in a Square
Determining if a symmetric function is Schur-positive is a prevalent and, in general, a notoriously difficult problem. In this paper we study the Schur-positivity of a family of symmetric functions. Given a partition ν, we denote by νc its complement in a square partition (mm). We conjecture a Schur-positivity criterion for symmetric functions of the form sμ′sμc − sν′sνc , where ν is a partitio...
متن کامل. C O ] 1 4 Se p 20 05 SCHUR POSITIVITY AND SCHUR LOG - CONCAVITY
We prove Okounkov’s conjecture, a conjecture of Fomin-FultonLi-Poon, and a special case of Lascoux-Leclerc-Thibon’s conjecture on Schur positivity and give several more general statements using a recent result of Rhoades and Skandera. We include an alternative derivation of this result directly from Haiman’s work on Schur positive immanants. Our results imply an intriguing log-concavity propert...
متن کامل2 00 5 Schur Positivity and Schur Log - Concavity
We prove Okounkov’s conjecture, a conjecture of Fomin-FultonLi-Poon, and a special case of Lascoux-Leclerc-Thibon’s conjecture on Schur positivity and give several more general statements using a recent result of Rhoades and Skandera. An alternative proof of this result is provided. We also give an intriguing log-concavity property of Schur functions. 1. Schur positivity conjectures The ring of...
متن کامل